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A variational method in statistical mechanics 

R PHYTHIAN 
Department of Physics, University College of Swansea, Singleton Park, Swansea, UK 

MS received 29 June 1972, in revised form 1 August 1972 

Abstract. A variational method, similar to the Frenkel variational method of quantum 
mechanics, is derived for the time development of phase functions of a system. It is shown 
how this method may be- used to obtain approximations for quantities of interest such as 
the density autocorrelation function of a fluid in equilibrium. 

1. Introduction 

Great interest has recently been shown in the problem of calculating time dependent 
correlation functions of quantities, such as the density, for classical fluids in thermal 
equilibrium. As is well known, this problem is closely related to that of the linearized 
relaxation of the system. A variety of different approaches appears in the literature. 
The generalized Langevin equation based on the projection operator methods of 
Zwanzig (1961) and Mori (1965), has been used by Akcasu and Duderstadt (1969) and 
Bixon and Zwanzig (1969), while the kinetic equation approach may be found in the 
papers of Ortoleva and Nelkin (1969), Lebowitz et a1 (1969) and Gross (1972). 

It is the purpose of the present paper to make a preliminary exploration of an 
alternative method which makes use of a time dependent variational principle similar 
to one of quantum mechanics. So far as the author is aware, the only previous use of 
variational methods in this context is due to Zwanzig who has presented a method for 
calculating approximate eigenfunctions and eigenvalues of the Liouville operator. The 
connection of Zwanzig’s theory with the time dependent problem is rather indirect and 
it would seem that a time dependent variational principle is more appropriate. Mention 
should also be made of the variational method formulated by Nakano (1959) for the 
calculation of transport coefficients in quantum statistical mechanics. Although this 
method can probably be reformulated for classical systems it does not appear possible 
to make contact in this way with the work of the authors mentioned above. 

A brief outline of the problem is first given in terms of time dependent phase functions 
of the system, and it is shown that the differential equation describing the evolution of 
these phase functions can be written in variational form. This follows from a temporal 
step by step least squares procedure, the derivation being analogous to that which gives 
the Frenkel variational principle of quantum mechanics. It is also pointed out that, for 
the problem of calculating time dependent correlation functions, an alternative varia- 
tional method may be derived. The two methods lead to the same results if suitable 
trial functions are used. As an example of the use of such methods, an approximation 
is derived by employing trial functions of single particle type, and it is shown that this 
leads immediately to an equation for the phase density autocorrelation function derived 
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previously by Akcasu and Duderstadt. A more complicated approximation, based on 
two particle trial functions, is also obtained which appears to be equivalent to one given 
by Gross. 

2. Formulation of the problem 

We consider a system consisting of a large number N of identical particles described by 
classical mechanics, the coordinates and momentum of the ath particle being denoted 
by q, , p a .  The Hamiltonian of the system is taken as 

P2 H = C P + V ( q ,  , . . . q , )  
a 2m 

where V is the potential energy due to interactions of the particles (not necessarily 
pairwise) and to steady external fields. A state of thermal equilibrium is represented by 
the canonical ensemble which corresponds to a phase space probability density given 
by A e-PH where A is the normalization constant and p the inverse temperature. 

A nonequilibrium state is usually represented by a time dependent probability 
density P ( q ,  , p l  ; . . . qN,pNIt) which will frequently be written in the abbreviated form, 
P(l . . . Nlt), which satisfies 

a p  
- = 9 P  
at 

where 9 is the Liouville operator 

The formal solution of the equation is clearly 

~ ( 1 .  . . N J t )  = e‘9P(l . . . NIO). 

Physical quantities are represented by phase functions ; typical examples are the kinetic 
energy Ca p,2/2m, the particle density Ca S(q -qJ,  the momentum density Z,paS(q-qa), 
the potential energy (for pair potentials) u(qa, qs). It is seen that these are of single 
particle type, that is, of the form C, 4(qa,pu)  or two particle type Za,p 4(qa ,p , ;  qp ,pB) .  
The numerical value at time t of a quantity represented by the phase function 0 is then 
given by 

j d l  . . . d N q 1 . .  . N)P(l . .  .Nit). 

This description resembles the Schrodinger picture of quantum theory. 
An alternative description is the ‘Heisenberg picture’ in which the time dependence 

is carried by the phase functidns instead of by the probability density. Suppose that the 
system at time 0 has definite values q1 , p l  ;, . . qN,PN for the coordinates of all particles. 
As a consequence of the equations of motion the coordinates of the particles at  a later 
time t will be given by quantities Qa(t), Pa(t), (a = 1 . . . AT) which are functions of t and of 
the initial coordinates q1 ,pl ; . . . qN,pN. The actual value of a quantity, represented by 
the phase function @, at time f wilt then be @(Q,(t), P l ( t ) ; .  . . QN(t), PN(t)). If the Q,,  P, 
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are written as functions of the initial coordinates in this expression we obtain a function 
denoted by 

which will be referred to as a time dependent phase function. If we now imagine that 
the initial state ofthe system is not definite but is given by a probability density P(l . . . N) 
i t  is seen that the mean value of the physical quantity at time t represented by O is 

s d l  . . . d N Q ( l . .  . N l t ) P ( l . .  . N). 

Comparing this with the same quantity in the Schrodinger picture and using the anti- 
hermitian nature of the Liouville operator (for suitable boundary conditions) we see 
that 

( 2 )  

This result may also be obtained directly by evaluating the time derivatives &(l . . . N I O ) ,  
6(1 . . . NIO) etc by successive application of the formula 

@(1 . . .  Nlt) = e-r20(1 . . .  N). 

From the formal expression ( 2 )  for @(l . . . Nit )  it follows immediately that i t  satisfies 
the equation 

YO(1. 

with the initial condition Q(1 . . . NIO) = O(1 . . . N). It is most important to note that Y 
is here interpreted as an operator acting on functions of the initial coordinates. This 
equation is thus not to be confused with the one immediately preceding it, and only 
applies when V does not depend explicitly on t .  

This Heisenberg picture is more convenient for our purposes since it enables us to 
discuss correlation functions such as (Q(1  . . . N l t ) Y ( l  . . . Nlt ' ) )  without the necessity of 
introducing fictitious external potentials. (Here ( . . . ) denotes a canonical ensemble 
average.) 

3. Variational approach 

We have seen that the problem reduces to the solution of the equation 

9 O ( l  . . . Nlt) 

together with an averaging over the initial distribution. An exact solution is, of course, 
impossible in general and one requires a criterion for selecting approximate solutions. 
Such a criterion is given by the least squares method. If w(l . . . N )  denotes a suitable 
weighting function, then i t  is clear that the best approximation among functions 
"(1 . . . N ( t )  of some particular form is that Y which minimizes 

I = s d l  . . . dNw(1..  . N ) {  [ g + y ) y ( l . .  . 
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for each value o f t  in the interval of interest. If we apply this criterion, starting at t = 0 
and proceeding step by step in time, the following variational equation is obtained : 

J d l . .  . dNw( l . .  . N)6Y(1.. .N i t )  -+Y "(1.. .N i t )  = 0. 

(For a more detailed discussion of this point see Corson (1951) and also, in a different 
context, Phythian (1972).) This equation is analogous to the Frenkel variational 
equation of quantum mechanics. 

There remains the question of the choice of the weighting function w. It is immedi- 
ately apparent that, if the trial functions Yare completely general, this choice is irrelevant 
since we can achieve I = 0 for all w .  For a restricted set of trial functions, which is 
necessary for obtaining useful approximations, it is clear that the best approximation 
will depend upon w. The most natural choice is to take w as the initial probability 
distribution, and this is why our equation has been written in a form referring to the 
initial coordinates. The variational equation then has the final form 

(:t 1 

J d l . .  . d N P ( l . .  . N)6Y(1.. .Nit) -+Y Y(1.. .N i t )  = 0. 
(:t 1 (4) 

In the present paper we shall confine our attention to a system in thermal equilibrium 
so that P will be given by the canonical ensemble. 

For the particular problem of calculating time dependent correlation functions for 
a system in thermal equilibrium, an alternative variational method may be formulated. 
Suppose that the correlation function in question is (@'@(r)), that is (0' e-'"@), where 
@ and 0' are two phase functions. Let "(7) and Y'(T) be two functions which satisfy the 
conditions "(0) = 0, Y'(t) = @' but which are otherwise arbitrary. Then the quantity 

I = ( @ Y ( t ) -  Ji drY'(T)(;+Y)Y(T)) (5) 

is stationary for variations of "(7) and "'(7) about @ ( T )  and W(z - t )  respectively and the 
stationary value in question is the correlation function (0' e-f"@). 

This variational principle is similar to one of quantum mechanics described by 
Demkov (1963) and the proof is analogous. It has the advantage that the correlation 
function is calculated as the stationary value of some quantity. On the other hand, the 
method is in general more complicated because of the presence of two trial functions. 
However, for suitable trial functions, the two variational methods give identical results. 
This is the case for the particular examples to be considered below as can easily be veri- 
fied. 

4. Illustration of the variational approach 

Consider a phase function of single particle form Xz 4(qz ,pz )  or, more briefly X a  4(a). 
It is clear that the corresponding time dependent phase function will not, in general, be 
of single particle form since application of the operators 9, 9'. . . gives functions of 
two, three . . . particle form. Nevertheless let us take trial functions 

where $ is arbitrary except for the condition $(q,pJO) = &q,p). 
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The variational equation (4) gives 

/ d l  . . . dNP(1 . . . N )  C 6$(f31t) 
P 

which becomes, using symmetry and the arbitrary nature of 6$. 

I d 2 . .  . dNP(1. .  . N) -+9 $(air) = 0. K r  i z 
Written out in full this becomes 

av  a I d 2 . .  . dNP(1 . .  . N) d 2 . .  . dNP(1 . .  . N)-.-$(llc) 
341 3PI 

+ ( N -  1) d 2 . .  . dNP(1 . . . N )  I 
Assuming suitable boundary conditions and using the form of P given by the canonical 
ensemble we see that the last two terms in the last integral cancel. The equation can be 
rewritten 

Here we have introduced the equilibrium distribution functions 

f(1) = j d 2 . .  . dNP(1 . , . N )  

f(1,2) = d 3 .  . . dNP(1 , . . N) s 
and the effective potential 

1 
%(1) = --[lnf(l)],,=o. 

B 
It may be seen that, if a time dependence of the form e-’”‘ is assumed for $, then one 
obtains from (6) an equation previously derived by Zwanzig for the approximate 
eigenfunctions of the Liouville operator (Zwanzig 1966, equation (35)). 

If we consider the case of a uniform liquid then it is easily verified that the quantity 

X(1lt) = f(l)$(lIt)+(N- 1) jd2f(lj2)$(2It) 

has a spatial Fourier transform 2 which satisfies the equation 

( 7 )  

where p is the density N / V ,  U ( p )  = ( P / z ) ~ ’ ~  exp(- pp2/2m) and g(k) is the Fourier 
transform of the pair distribution function g defined by 

1 
f(L 2) = i/2 U(P,)U(P,)g(q,-42). 
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If the phase function in question is the phase density defined by 

1 m, P)  = c d ( q  - 4" -A) 
U 

then our approximation for the quantity (D(q',p'lt)D(q,p)) is 

which is just the quantity X(q,pIt) introduced above. (The $ in this case depends on 
q', p' as well because of the initial condition +(llO) = 6(q, -q')6(p, -p'), although this 
has not been indicated explicitly.) The variational method thus provides a simple 
derivation of equation (34) in the paper of Akcasu and Duderstadt referred to previously. 

A better approximation is presumably given by using two particle trial functions 

= 2 $(a, Bit). 
a < 0  

The variational equation (4) now gives 

which can eventually be reduced to the two equations 

and 

+N-2 j d 3 j  m i ,  2,3) a w ,  3it)+af(l. 2,3) a w ,  314 
B a41 * aP 1 842 apz 

This is equivalent to the equations derived by Gross by a different method. It is seen 
that the interparticle potentials do not appear explicitly in the equations. (Incidentally 
we have shown that the assumption of pair potentials is not necessary for the derivation 
of this result.) The approximation appears rather intractable and i t  is probably worth- 
while examining alternative ones generated by less general two particle trial functions. 
This and other questions will be considered in a future paper. 
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